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The generation of a vortex motion on a water surface by gravity waves at frequencies of 3 and 4 Hz and wave-
lengths of 17 and 9.7 cm, respectively, has been studied experimentally. It has been shown that the results can
be described by a model of the formation of a vorticity by nonlinear waves. It has been shown for the first time
that the vorticity amplitude on a water surface depends on the phase difference between the waves propagating
at an angle of 90° with respect to each other and with a period of 360°. A quadratic dependence of the surface
vorticity amplitude on the angular amplitude of the waves has been observed. Transfer of the energy of the
vortex motion from the pumping region to a larger scale has been discovered.
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INTRODUCTION

The spectrum of waves on the surface of an
infinitely deep liquid is given by the expression

(1)

where  is the circular frequency of the wave,  is the
acceleration of gravity, k is the wave vector,  is the
surface tension, and  is the density of the liquid.
Waves on a water surface with the wavelength longer or
shorter than  cm are com-
monly referred to as gravity and capillary waves,
respectively. The boundary frequency is 
13 Hz. The leading term in Eq. (1) at frequencies of
3 and 4 Hz is the first gravity term. It is greater than the
capillary term by a factor of 60 and 30 at frequencies of
3 and 4 Hz, respectively, which justifies the classifica-
tion of surface waves in this frequency region as gravity
waves.

The generation of vortices on a water surface by
Faraday waves was first observed in [1, 2]. In our pre-
vious work [3], we observed the formation of a vortex
flow by surface waves in a vessel with a liquid making
harmonic oscillations in the vertical direction at
pumping amplitudes below the parametric instability
threshold. It was found that the generation of vortices
is caused by the interaction of nonlinear waves propa-
gating at an angle with respect to one another. The
theoretical model describing the formation of vortices
by waves was proposed in [4], where it was shown that
the generation of a vorticity on the surface of a liquid

is due to the nonlinear interaction of surface waves
propagating at an angle with respect to each other.

The vorticity  on the surface of a liquid is defined as

(2)

where  and  are the components of the velocity of
the liquid.

When standing waves with the frequency  are
excited on the surface of a liquid in two perpendicular
directions, the vorticity  depends on the wave ampli-
tudes  and , the wave vector k, and the phase dif-
ference  between the waves and is described by the
expression

(3)

The vorticity amplitude  in the case of standing
waves is

(4)
In the case of waves traveling along the surface, the

vorticity is independent of the phase difference  and
is given by the expression

(5)
The experimental results on the generation of vor-

tices by standing and traveling capillary waves at fre-
quencies of about 40 Hz in a -cm rectangular
cell were presented in [3, 4]. The wavelength at a fre-
quency of 40 Hz is approximately 0.7 cm. As was
found, the amplitude dependences of the vorticity for
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traveling and standing capillary waves are described
qualitatively well by Eqs. (3) and (5), but there is a dis-
agreement by a factor of 2–5 in the absolute value of
the vorticity .

According to [4], dependences (3) and (5) are uni-
versal and should hold for both capillary and gravity
waves. Thus, this work was aimed at studying the
amplitude and phase dependences of the vorticity
modulus under the excitation of a surface by gravity
waves and investigating the energy distribution over
the wave vectors. We present the experimental results
of studying the generation of vortices on a water sur-
face by gravity waves at frequencies of 3 and 4 Hz and
wavelengths of excited resonance modes of 17 and
9.7 cm, respectively.

EXPERIMENT

Figure 1 shows the scheme of the experimental
setup for studying the vortex and wave motions on a
water surface in the wavelength range from 0.25 to
20 cm. The bath was made of Plexiglas with a thick-
ness of 10 mm. The length, width, and height of the
bath were 140, 70, and 40 cm, respectively. The edges
and upper rims of the bath were reinforced by metallic
angle profiles to avoid the development of low-fre-
quency oscillations during the operation of wave gen-
erators. The bath was divided into two halves by a
removable wall. In these experiments, half of the

-cm bath was used. The bath was covered from
the top by a transparent glass to prevent air dust parti-
cles from coming to the water surface.

The bath was mounted on a Standa vibration-iso-
lating table with a pneumatic support. As a rule, the

Ω

×70 70

bath was filled with about 70 L of purified distilled
water. The depth of water in the bath was about 10 cm.

The wave generators each consisting of a drive 1
and a plunger 2 were fixed to a frame and mounted to
the Standa table. The waves on the water surface were
excited by the plunger, a stainless still tube with a
diameter of 10 mm half-immersed into water and
making vertical oscillations. The length of the tube was
68 cm; the distance from the tube to the bath wall was
1 cm. The drives of the wave generators were Pioneer
TS-W254R subwoofers with a nominal power of
250 W. The sinusoidal signals were produced by an
Agilent 33522B double-channel generator, amplified,
and fed to the subwoofers. The phase difference 
between the signals was controlled in the experiment.
The amplitude of the waves propagating from the
plungers was measured in the center of the bath by a
laser beam reflected from the surface.

To visualize the motion of the liquid, a white poly-
amide powder with an average particle diameter of
about 30 μm was poured on the water surface. The
density of particles was a bit lower than the density of
water, so that they were immersed. Therefore, we
assumed that the particles were completely dragged by
the water f low. The granules on the surface stuck
together into coarser formations with a size on the
order of 1 mm. We managed to break them into
smaller clusters by intense excitation of the surface.
The particles on the surface were illuminated by light-
emitting diodes situated along the perimeter of the
bath. Video of the oscillating surface was recorded for
60 s by a Canon EOS 70D camera at a rate of 24 fps.
Such a rate allows choosing the frames of the oscillat-
ing surface at the same phase of the wave. For exam-
ple, at a driving force frequency of 3 Hz, a time interval
of 10 s includes 30 frames in series where the exciting
surface waves are in the same phase. Such a selection
of frames allows excluding from further processing the
oscillating component of the displacement of a probe
particle f loating on the surface. To identify tracks of
particles on the surface, frames are summed.

Processing of the original frames by PIVLab soft-
ware [6] allows computing the particle velocities 
and  and then calculating the surface vorticity with
the use of Eq. (2). The energy distribution over the
wave numbers can be calculated by averaging the
energy over the spatial ring by the formula

(6)

where the integration is performed over the ring from
k to . The resulting value is normalized to the
surface area S of the liquid. Here,  is the Fourier
component of the velocity of the liquid. The brackets

 denote averaging over the frames taken at different
times.
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Fig. 1. (Color online) Scheme of the setup with the
(1) camera, (2) plunger drives, (3) separating wall, (4)
bath, (5) water, and (6) plungers.
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The group velocity of the wave at a frequency of
3 Hz is 25 cm/s. Thus, the traveling wave passes dou-
ble the distance between the plunger and the wall, i.e.,
136 cm, in 5.5 s from switching on the pumping to the
emergence of a standing wave on the water surface. In
the results presented below, we calculated the vorticity
and energy distributions from the data collected for 5 s
starting from 15 s after switching on the pumping to be
sure that the amplitudes of standing waves and the vor-
ticity reached the steady state. According to our mea-
surements, the vorticity modulus starts to slightly
decrease at times greater than 30 s after switching on
the pumping.

RESULTS

Figure 2a shows the tracks of polyamide particles
under pumping of the water surface at a frequency of
3 Hz. A lattice of vertical and horizontal rows of verti-
ces similar to that reported in [1] is well seen on the
water surface at moderate pumping amplitudes. The
average velocity of polyamide particles is 0.02 cm/s.
Figure 2a presents the picture averaged over 10 s start-
ing from 15 s after switching on the pumping.

Figure 2b shows the distribution of the vorticity
found by processing the sequential images by PIVLab
software. As is clearly seen, the lattice formed in the
bath consists of small vortices of close sizes and oppo-
site vorticities. The lattice periods in the  and 
directions are 17 cm and coincide with the wavelength
of the standing wave that appeared under the 3-Hz

X Y

pumping. The total vorticity on the bath surface is
zero.

The vorticity amplitude of each vortex on the water
surface increases with the pumping level. Figure 3a
shows the square root of the average vorticity ampli-
tude  of the vortices on the water surface as a func-
tion of the angular amplitude of the standing wave
measured in the center of the bath. The phase differ-
ence  between the signals supplied to the plungers is

. It is clearly seen that the vorticity amplitude
increases quadratically with the wave amplitude, in
accordance with Eq. (3).

Figure 3b shows the vorticity amplitude on the
water surface as a function of the phase difference 
between the harmonic signals at a frequency of 3 Hz
supplied to the plungers. As is seen, the experimental
points fit well the dependence proportional to 
within the angle range from  to . The vorticity
amplitude is conserved under a change in the phase
difference  from  to , but the directions of
the vorticity in the lattice change to the opposite ones.
Thus, the period of the function  is .

The picture of tracks becomes more complicated at
a high pumping level: a vortex lattice is formed right
after switching on the pumping and then, after a min-
ute or so, structures larger than the pumping wave-
length develop on the surface. The trajectories (tracks)
of particles evolve slowly with time; the vortices
“breathe.”
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Fig. 2. (Color online) (a) Tracks of polyamide particles on the water surface under pumping by two plungers at a frequency of 3 Hz
and the angular amplitude  rad of the wave in the center of the bath. The plungers are situated at the bottom and on the
right-hand side of the figure. (b) Distribution of the vorticity on the water surface under pumping by two plungers at a frequency
of 3 Hz and the phase difference .
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Figure 4a shows the tracks of polyamide particles
on the water surface under pumping at a frequency of
4 Hz found by averaging over 15 s starting from 3 min
after switching on the pumping. The wave amplitude
measured at a distance of 3 cm from the plungers is
( ) mm. In Fig. 4a, one can clearly see two
formed vortices with the characteristic sizes close to
70 cm (the length of the bath sidewall), as well as
smaller vortices. The phase difference in these mea-
surements was  = .

Figure 4b shows the vortex structure generated by
standing waves at a frequency of 4 Hz. Each side of the
bath matches seven wavelengths; i.e., the wavelength
at the pumping frequency is 9.7 cm. One can clearly
see a vortex lattice slightly distorted by two large vorti-
ces in the lower and upper parts of the picture. The
total vorticity is zero. Figure 5 presents the absolute

. ± .1 0 0 2

ψ °120

value  of the total vorticity on the water surface
excited by two plungers at a frequency of 4 Hz as a
function of the phase difference  between the oscil-
lations of the plungers.

The initial phase difference between the oscilla-
tions of the plungers is . The maximum and min-
imum of the vorticity modulus occur at  and

, respectively. In addition, the dependence 
obviously has a constant component of approximately
0.08 s–1.

As is seen in Fig. 4, under the intense and long
pumping, large vortices appear on the water surface in
addition to the lattice of small vortices. This implies
that the vorticity  and the energy  propagate in the
k space from the pumping region with  cm to
larger scales.

The calculated distributions  for the vortex
structures shown in Figs. 2 and 4 are presented in
Fig. 6 (curves 1 and 2). The dependence  is clearly
nonmonotonic. In the case of the excitation of the sur-
face by waves at a frequency of 4 Hz, there is a pro-
nounced peak at the wave vector  cm–1, coin-
ciding with the wave vector of pumping. In addition,
there is a peak at the wave vector  = 1.12 cm–1. This
peak can be presumably associated with the formation
of the vorticity owing to the interaction between the
wave generated at the pumping frequency and the per-
pendicular wave with a wave vector of 1.06 cm–1 (the
respective wavelength is one-third of the pumping
wavelength). The energy transfer to larger scales does
not occur.

However, in the case of pumping at a frequency of
4 Hz (Fig. 6, curve 2) and the formation of surface vor-
tex structures larger than the pumping scale, the
energy  is distributed over the wave vectors rang-
ing from the pumping region  cm–1 to large
scales with  cm–1.

The first peak at the wave vector  cm–1 is
situated within the pumping region. This energy is
concentrated in small vortices, which form a lattice.
Clearly,  increases with a decrease in . The max-
imum of the distribution  falls to the wave vector
close to 0.09 cm–1, which corresponds to the size of
large vortices formed in the bath. The additional curve 3
in Fig. 6 shows the distribution  under pumping
by waves with a shorter wavelength (frequency of 6 Hz,
wavelength of 4.9 cm). This distribution also exhibits
two extrema corresponding to the pumping scale,

 cm–1, and the energy maximum,  cm–1.
Comparison of distributions 2 and 3 leads to a conclu-
sion that the size of a large vortex is independent of the
pumping wavelength, being determined by the dimen-
sions of the bath. The  values in the region of the
wave vectors  cm–1 are more than an order of
magnitude lower than the amplitudes of the main
peaks. That is, the direct cascade is hardly formed: the
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Fig. 3. (a) Square root  of the vorticity amplitude on
the water surface versus the angular amplitude  of the
waves under pumping by two plungers at a frequency of
3 Hz and the phase difference . (b) Vorticity
amplitude  versus the phase difference between the
sinusoidal signals supplied to the wave generators accord-
ing to (points) the experiment and (solid curve) the for-
mula .
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energy is spent entirely for maintaining large vortices,
where it is dissipated owing to viscous losses.

DISCUSSION

As in [3, 4], we observe in this work a vortex lattice
with a lattice constant equal to the pumping wave-
length. This indicates the validity of the model of the
generation of vortices by nonlinear waves and justifies
the use of Eqs. (3) and (5) to describe the vorticity on

the surface of a liquid in a wide range of wavelengths
from 0.5 to 17 cm. It is worth mentioning that the vor-
tex lattice under pumping at a frequency of 3 Hz
(Fig. 2) is as perfect as under pumping by capillary
waves [4], in which case the measurements were car-
ried out in a special box with a pure atmosphere. In the
case of gravity waves, a thin incompressible film is
formed on the water surface in about 1 h if the bath is
not covered from the top, which results in a consider-
ably higher damping of waves [5], as indicated by the
distribution of the vorticity.

Fig. 4. (Color online) (a) Tracks of polyamide particles on the water surface under pumping by two plungers at a frequency of
4 Hz. The amplitude of the waves at a distance of 3 cm from the plungers is  mm. The plungers are situated at the
bottom and on the right-hand side of the figure. (b) Distribution of the vorticity on the water surface. The phase difference is

.

= ± .(1.0 0 2)H

ψ = °120

Fig. 5. Vorticity modulus on the water surface versus the
phase difference  between the oscillations of the plungers
at a frequency of 4 Hz. The amplitude of the wave at a dis-
tance of 3 cm from the plungers is  mm.

ψ
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Fig. 6. Energy distribution  over the wave vectors
under pumping by two plungers at a frequency of (1) 3, (2)
4, and (3) 6 Hz.
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Damping of waves is insignificant in Figs. 3b and
4b, which show the vortex lattices. The amplitude of
the wave reflected from the bath wall is nearly the
same as the amplitude of the counterpropagating wave
traveling from the plunger. According to Eqs. (3) and
(5), a difference between these amplitudes should not
affect the quadratic dependence of the vorticity on the
wave amplitude.

The phase dependence of the vorticity amplitude
under the excitation of waves by two plungers at a fre-
quency of 3 Hz fits very well a periodic function pro-
portional to . The period of the function  is

, in agreement with Eq. (3).
A somewhat more complicated situation takes

place in the experiments on studying the dependence
of the vorticity modulus on the phase difference 
between two perpendicular excitation waves at a fre-
quency of 4 Hz. As was mentioned above, there are
both vortices forming a lattice on the water surface and
larger vortices that appear owing to the nonlinear
interaction of the vortices and waves. This is clearly
seen in Fig. 4a, in which there are both a lattice of indi-
vidual vortices and large vortices on the surface.
Accordingly, the phase dependence of the vorticity
cannot be described by Eq. (3) and should include a
term reflecting the presence of larger vortices. As is
seen, pumping of vortices does not disappear even at

; i.e., the presence of large-scale vortex f lows
complicates the generation of vortices by nonlinear
surface waves described by simple relations (3) or (5).
The quantity  oscillates about some pedestal. It can-
not be concluded from the results of the present exper-
iments whether the height of this pedestal changes
with an increase in the phase difference; hence, we
assume it to be constant in the first approximation.

The found experimental result qualitatively does
not contradict the model presented in [4]. As is seen in
Fig. 5, the dependence of  on the phase difference

 has a periodic character with two extrema. The
period is . Thus, the dependence of the vorticity
modulus  on the phase difference can be described
by the formula

(7)

where  is the initial phase shift and  is a constant.
Fitting of the experimental data to Eq. (7) yields

,  s–1, and  s–1. It is
worth mentioning that the constant term is deter-
mined by the structure of large vortices that appear on
the surface and varies from one experiment to another
under the same initial conditions.

It should be mentioned that the absolute values of
the vorticity modulus obtained in the experiments on
measuring the dependence of the vorticity amplitude
on the wave amplitude and phase difference are
approximately four times greater than the theoretical
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value calculated by Eq. (3). A similar discrepancy was
observed in [4] in the case of capillary waves.

It should also be mentioned that, under pumping at
low frequencies corresponding to gravity waves, the
formation of a vortex structure with a characteristic
size greater than the pumping scale was always
observed sometime after the pumping was switched
on. One or a few large vortices can occupy almost the
whole surface of the bath except small regions, where
“smearing” vortices, which assure zero total vorticity,
are situated. It is also worth mentioning that large vor-
tices appeared in the experiments with capillary waves
only above the parametric instability threshold [2].

As follows from the dependences shown in Fig. 6
(curves 2 and 3), the energy of the vortex motion is
transferred from the pumping region to larger scales.
Obviously, the energy of surface waves is first trans-
ferred to a system of vortices arranged in a lattice.
Next, owing to the nonlinear interaction, the energy is
distributed to larger scales. Clearly, the energy is
mainly transferred to coarse vortices and does not go
toward smaller scales: a direct cascade toward high 
values (small scales) hardly occurs.

The inverse cascade was previously observed in the
experiments on the generation of surface Faraday
waves [7]. It turned out that the experimental distribu-
tion of energy over the wave vectors can be described
well by the dependence . This depen-
dence for the inverse energy cascade was predicted
theoretically by Kraichnan [8] for thin two-dimen-
sional liquid layers. In the case of the direct cascade,

 [8]. In our experiments, the pumping and
dissipation regions are not sufficiently far apart in the
k space for the formation of a developed cascade
described by a power function of .

It should be emphasized that we deal with the
three-dimensional case in our experiments, since the
bath depth is greater than the penetration depth of the
waves at all pumping frequencies we used. However,
the energy transfer from the pumping region to larger
scales inherent in the two-dimensional case certainly
takes place.

The discrepancy between the experimental abso-
lute value of the vorticity and the theoretical estimate
and the formation of the inverse cascade inherent in
two-dimensional systems in our three-dimensional
experiments require further experimental and theoret-
ical investigations.

CONCLUSIONS
In this work, it has been experimentally demon-

strated for the first time that the vorticity formed on
the water surface by weakly nonlinear gravity waves
depends on the phase difference between the waves
and is described well by the expression derived in [4].
The vorticity amplitude on the surface depends qua-
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dratically on the wave amplitude. Thus, the model of
the generation of a vortex motion by nonlinear waves
is applicable to the description of the vorticity on the
surface of a liquid for both the waves in the capillary
range with a wavelength of about 0.5 cm and gravity
waves with wavelengths on the order of 10 cm. In our
experiments, we have observed the energy transfer
from weakly nonlinear wave motion to the system of
vorticities forming a lattice with further redistribution
to larger scales.
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